Pearson Edexcel

Mark Scheme (Results)

October 2021

Pearson Edexcel International Advanced Level In Chemistry (WCH15)
Paper 01:Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021
Question Paper Log Number P67131A
Publications Code WCH15_01_2110_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (Multiple Choice)

Question number	Answer	Mark
$\mathbf{1 (a)}$	The only correct answer is D (Pt, Pt)	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is incorrect because both electrodes should be made of platinum	
$\boldsymbol{B} \quad$ is incorrect because both electrodes should be made of platinum		
$\boldsymbol{C} \quad$ is incorrect because both electrodes should be made of platinum		

Question number	Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is $\mathbf{C}\left(1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})\right)$	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is incorrect because $\mathrm{H}_{3} \mathrm{PO}_{4}$ is not completely ionised	
$\boldsymbol{B} \quad$ is incorrect because $\mathrm{H}_{2} \mathrm{SO}_{4}$ is not completely ionised		
$\boldsymbol{D} \quad$ is incorrect because $\mathrm{CH}_{3} \mathrm{COOH}$ is not completely ionised		

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{1 (c)} & \text { The only correct answer is B (17.91 g) } & \mathbf{1} \\ & \boldsymbol{A} \quad \text { is incorrect because there should be only one mol of chromium ions per mol of dichromate ions } \\ & \boldsymbol{C} \quad \text { is incorrect because there should be only one mol of chromium ions per mol of dichromate ions } \\ \text { D is incorrect because there should be only one mol of chromium ions per mol of dichromate ions }\end{array}\right)$.

Question number	Answer	Mark
$\mathbf{1 (d)}$	The only correct answer is A $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	$\mathbf{1}$
	$\boldsymbol{B} \quad$ is incorrect because chloride ions could be oxidised	
$\boldsymbol{C} \quad$ is incorrect because bromide ions would be oxidised		
$\boldsymbol{D} \quad$ is incorrect because this would introduce additional chromium species into the mixture		

Question number	Answer	Mark	
$\mathbf{2}$	The only correct answer is C $\left(\mathrm{Pt}^{2}\left\|\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+} \\|\left[\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}\right],\left[\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}\right]\right\| \mathrm{Pt}\right)$	$\mathbf{1}$	
	$\boldsymbol{A} \quad$ is incorrect because both electrodes should be made of platinum $\boldsymbol{B} \quad$ is incorrect because both electrodes should be made of platinum and the $\mathrm{MnO}_{4} / / \mathrm{Mn}^{2+}$ half-cell does not show reduction $\boldsymbol{D} \quad$ is incorrect because the $\mathrm{MnO}_{4} / / \mathrm{Mn}^{2+}$ half-cell does not show reduction		

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{3} & \text { The only correct answer is } \mathbf{D}\left(2 \mathrm{Ag}^{2+} \rightarrow \mathrm{Ag}^{+}+\mathrm{Ag}^{3+}\right) & \mathbf{1} \\ & \boldsymbol{A} \quad \text { is incorrect because the disproportionation is not thermodynamically feasible } \\ \boldsymbol{B} \quad \text { is incorrect because the disproportionation is not thermodynamically feasible } \\ \boldsymbol{C} \quad \text { is incorrect because the disproportionation is not thermodynamically feasible }\end{array}\right)$.

Question number	Answer	Mark
$\mathbf{4}$	The only correct answer is A (the cathode has a more positive potential than the anode)	
	$\boldsymbol{B} \quad$ is incorrect because oxidation always occurs at the anode	
\boldsymbol{C}	is incorrect because oxygen is reduced at the positive electrode	
\boldsymbol{D}	is incorrect because the overall reaction is the same under both acidic and alkaline conditions	

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{5} & \begin{array}{l}\text { The only correct answer is B (carbon monoxide forms stronger dative covalent bonds with haemoglobin than does } \\ \text { oxygen) }\end{array} \\ & \boldsymbol{A} \quad \text { is incorrect because carbon monoxide can be displaced from carboxyhaemoglobin } \\ \boldsymbol{C} & \text { is incorrect because the formation of carboxyhaemoglobin does not lead to an increase in the entropy of the system } \\ \boldsymbol{D} & \text { is incorrect because the difference in bond type does not fully explain the difference in dative covalent bond strength }\end{array}\right]$

Question number	Answer	Mark
$\mathbf{6}$	The only correct answer is D (pink solution \rightarrow blue precipitate \rightarrow yellow-brown solution)	
	$\boldsymbol{A} \quad$ is incorrect because $\mathrm{CoCl}_{2}($ aq $)$ is a pink solution	
\boldsymbol{B}	is incorrect because the blue precipitate dissolves in excess aqueous ammonia to form a yellow-brown solution	
$\boldsymbol{C} \quad$ is incorrect because $\mathrm{CoCl}_{2}(\mathrm{aq})$ is a pink solution		

Question number	Answer	Mark
$\mathbf{7}$	The only correct answer is B $\left([\mathrm{Ni}(\mathrm{EDTA})]^{2-}\right)$	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is incorrect because chloride ions act as monodentate ligands	
$\boldsymbol{C} \quad$ is incorrect because ethanedioate ions act as bidentate ligands		
$\boldsymbol{D} \quad$ is incorrect because 1,2-diaminoethane molecules act as bidentate ligands		

Question number	Answer	Mark
$\mathbf{8}$	The only correct answer is D (none of the products are harmful to the environment)	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is incorrect because the reactions occurring in catalytic converters involve heterogeneous catalysis	
$\boldsymbol{B} \quad$ is incorrect because carbon monoxide is adsorbed onto the surface of the catalyst		
$\boldsymbol{C} \quad$ is incorrect because nitrogen is desorbed from the surface of the catalyst		

Question number	Answer	Mark
$\mathbf{9}$	The only correct answer is $\mathbf{C}\left(\mathrm{Mn}^{2+}\right)$	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is incorrect because $\mathrm{MnO}_{4}-$ ions are neither a product nor a catalyst in this reaction	
$\boldsymbol{B} \quad$ is incorrect because H^{+}ions are neither a product nor a catalyst in this reaction		
$\boldsymbol{D} \quad$ is incorrect because CO_{2} is not a catalyst in this reaction		

Question number	Answer	Mark
$\mathbf{1 0}$	The only correct answer is $\mathbf{A}\left(\right.$ both $\mathrm{Fe}^{2+}(\mathrm{aq})$ and $\mathrm{Fe}^{3+}(\mathrm{aq})$ catalyse the reaction $)$	$\mathbf{1}$
	$\boldsymbol{B} \quad$ is incorrect because both $\mathrm{Fe}^{2+}(a q)$ and $\mathrm{Fe}^{3+}(\mathrm{aq})$ catalyse the reaction	
	$\boldsymbol{C} \quad$ is incorrect because both $\mathrm{Fe}^{2+}(a q)$ and $\mathrm{Fe}^{3+}(a q)$ catalyse the reaction	
$\boldsymbol{D} \quad$ is incorrect because both $\mathrm{Fe}^{2+}(a q)$ and $\mathrm{Fe}^{3+}(\mathrm{aq})$ catalyse the reaction		

Question number	Answer	Mark	
$\mathbf{1 1}$			

Question number	Answer	Mark
$\mathbf{1 2}$	The only correct answer is C (330.7)	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is incorrect because this is the molar mass of bromobenzene	
	$\boldsymbol{B} \quad$ is incorrect because this is the molar mass of the monosubstituted product	
$\boldsymbol{D} \quad$ is incorrect because this is the molar mass of the fully substituted product		

Question number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is C $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}>\mathrm{NH}_{3}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is incorrect because $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ is the weakest base in the sequence	
$\boldsymbol{B} \quad$ is incorrect because $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ is a stronger base than NH_{3}		
$\boldsymbol{D} \quad$ is incorrect because this shows the order of increasing basicity		

Question number	Answer	Mark
14	The only correct answer is B A is incorrect because this amine could be prepared by the reduction of butanenitrile C is incorrect because this amine could be prepared by the reduction of 2-methylpropanenitrile	1

Question number	Answer	Mark
$\mathbf{1 5}$	The only correct answer is B (4)	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is incorrect because the repeat unit of the polymer is formed from four different amino acids	
	$\boldsymbol{C} \quad$ is incorrect because the repeat unit of the polymer is formed from four different amino acids	
$\boldsymbol{D} \quad$ is incorrect because the repeat unit of the polymer is formed from four different amino acids		

Question number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is D (carbon dioxide giving carboxylic acids)	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is incorrect because Grignard reagents react with water giving alkanes	
	$\boldsymbol{B} \quad$ is incorrect because Grignard reagents react with methanal giving primary alcohols	
$\boldsymbol{C} \quad$ is incorrect because Grignard reagents react with ketones giving tertiary alcohols only		

Question number	Answer	Mark
$\mathbf{1 7}$	The only correct answer is C (will be lower than the true value)	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is incorrect because using a sample that is impure would cause the value to be lower	
$\boldsymbol{B} \quad$ is incorrect because using a sample that is impure would cause the value to be lower		
$\boldsymbol{D} \quad$ is incorrect because using a sample that is impure would cause the value to be lower		

Section B

Question Number	Answer	Additional guidance	Mark
18(a)	- any indication that \mathbf{A} contains $\mathrm{FeCl}_{2} /$ iron(II) chloride - working to show that \mathbf{A} is a tetrahydrate	Example of calculation: Ignore (A contains) Fe^{2+} Ignore $\left[\mathrm{FeCl}_{4}\right]^{2-}$ $\begin{aligned} \text { mass of water } & =198.8-(55.8+2 \times 35.5) \\ & =72.0(\mathrm{~g}) \\ \text { moles of water } & =72.0 \div 18.0=4 \end{aligned}$ A is $\mathrm{FeCl}_{2} .4 \mathrm{H}_{2} \mathrm{O} / \mathrm{iron}(\mathrm{II})$ chloride tetrahydrate Allow $\mathrm{FeCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$	2

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 8 (b)}$	$\bullet\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	Allow $\left[\mathrm{Fe}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{+} /\left[\mathrm{Fe}(\mathrm{Cl})\left(\mathrm{H}_{2} \mathrm{O}\right) 5\right]^{+}$ Ignore omission of square brackets Ignore name even if incorrect	$\mathbf{1}$

Question Number	Answer	Additional guidance	Mark
18(c)	- A diagram showing the octahedral shape	Example of diagram:	1
		N $]^{4-}$	
		Accept arrows for dative covalent bonds	
		Allow CN for $\mathrm{C} \equiv \mathrm{N}$	
		Do not award $\mathrm{KCN} / \mathrm{HCN}$ for $\mathrm{C} \equiv \mathrm{N}$ Do not award M for Fe	
		Ignore connectivity of CN ligands	
		Ignore lone pairs	
		Ignore omission of square brackets	
		Ignore all charges	
		Do not award diagrams with no 3D shape	

Question Number	Answer		Additional guidance	Mark
18(d)	- moles of K, Fe	(1)	Example of calculation:	3
			$\mathrm{mol} \mathrm{K}=35.6 \div 39.1=0.91049$	
			Allow 0.91282 from A_{r} value of 39	
			$\mathrm{mol} \mathrm{Fe}=17.0 \div 55.8=0.30466$	
			Allow 0.30357 from A_{r} value of 56	
			Ignore SF	
	- moles of C and N - calculation of $\mathrm{K}: \mathrm{Fe}: \mathrm{C}: \mathrm{N}$ mole ratio and empirical formula	(1)	$\mathrm{mol} \mathrm{C}=21.9 \div 12.0=1.8250$	
			$\mathrm{mol} \mathrm{N}=25.5 \div 14.0=1.8214$	
			Ignore SF except 1 SF	
		(1)	$\begin{array}{c:c:c} \mathrm{K} & : \mathrm{Fe} & : \\ 0.91049 & \mathrm{C} & : \\ 0.30466 & : & 1.825 \end{array} \mathrm{~N}$	
			Allow $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$	
			Allow elements in any order	
			TE on moles of $\mathrm{K}, \mathrm{Fe}, \mathrm{C}$ and N provided empirical formula is closest whole number ratio	

Question Number	Answer	Additional guidance	Mark
18(e)	An equation including: - $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ reactant and $[\mathrm{Fe}(\mathrm{CN}) 6]^{3-}$ product - rest of equation and balancing	Example of equation: $\begin{equation*} 2\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+\mathrm{Cl}_{2} \rightarrow 2\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+2 \mathrm{Cl}^{-} \tag{1} \end{equation*}$ Allow $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ reactant and $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ product Ignore omission of square brackets M2 dependent on M1 Allow multiples Ignore state symbols even if incorrect Do not award uncancelled K^{+}spectator ions If no other mark awarded, award (1) for any multiple of the following equation: $2 \mathrm{Fe}^{2+}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{Cl}^{-}$	2

Question Number	Answer	Additional guidance	Mark
19(a)	- suitable test: bromine water $/ \mathrm{Br}_{2}(\mathrm{aq})$ - result of test: decolourises (from orange) with Dewar structure (and no change with benzene)	Allow bromine $/ \mathrm{Br}_{2}((\mathrm{l})) / \mathrm{Br}_{2}$ in organic solvent Do not award $\mathrm{Br} / \mathrm{Br}^{-}$ Accept potassium manganate((VII))/KMnO4 and acidified/ named acid/ H^{+} Do not award hydrogenation Do not award combustion Allow does not decolourise with benzene Allow brown/orange/yellow for colour of bromine water Allow red/brown/orange for colour of bromine Allow pink/purple for colour of potassium manganate((VII)) Ignore colour fades for decolourises Ignore reference to addition/substitution Do not award any reference to decolourisation/reaction with benzene	2

Question Number	Answer	Additional guidance	Mark
19(b)	- similarity: (both compounds have) one (NMR) peak	Ignore any reference to IR and/or ${ }^{13} \mathrm{C}$ NMR	2
		Allow (both compounds have) one proton environment	
		Ignore just same number of peaks	
		Ignore references to relative peak area/integration/splitting	
		Do not award any other number of peaks	
	- difference: expected chemical shift values (1)	chemical shift for benzene within range of 6.4 to 8.4 ppm (actual value is 7.3 ppm)	
		and chemical shift for Ladenburg structure within range of	
		0 to 2.3 ppm (actual value is 2.3 ppm)	
		Allow any range or value within the above ranges	
		Ignore just benzene would have a higher chemical shift than Ladenburg structure or reverse argument	
		Ladenburg structure or reverse argument	
		Do not award additional incorrect chemical shifts	

Question Number	Answer	Additional guidance	Mark
19(c)	An explanation that makes reference to the following points: - showed that all $\mathrm{C}-\mathrm{C}$ bonds are the same length in benzene - in Kekulé structure the $\mathrm{C}=\mathrm{C}$ bonds would be shorter than the $\mathrm{C}-\mathrm{C}$ bonds (or reverse argument) (1)	Ignore any reference to: $\mathrm{C}-\mathrm{H}$ bonds bond strength/bond angle delocalised electrons Dewar/Ladenburg structures Allow showed benzene is a regular hexagon Allow showed benzene contains only one type of carbon-carbon bond Allow benzene bond lengths are in between $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ Ignore just benzene has no $\mathrm{C}=\mathrm{C}$ bonds Do not award benzene bond lengths are longer than $\mathrm{C}-\mathrm{C} /$ shorter than $\mathrm{C}=\mathrm{C}$ Allow Kekulé structure would have shown two different lengths/types of carbon-carbon bond Allow Kekulé structure would have alternating carbon-carbon bond lengths Ignore just Kekulé has $\mathrm{C}=\mathrm{C}$ bonds Do not award $\mathrm{C}-\mathrm{C}$ bonds would be shorter than the $\mathrm{C}=\mathrm{C}$ bonds If no other mark awarded, just bond lengths equal in benzene but different in Kekulé scores (1)	2

Question Number	Answer	Additional guidance	Mark
19(d)(i)	A diagram showing: - correct relative stabilities - two or three numerical differences in enthalpy with appropriate arrows	Example of diagram: Allow names for structures If three values and arrows are given they must all be correct to score M2 Allow slight imprecision in start and end of arrows in M2 Ignore any x -axis label Do not award double headed arrows in M2 Do not award incorrect sign in M2	2

Question Number	Answer	Additional guidance	Mark
19(d)(ii)	An answer that makes reference to the following: pi bonds are weaker/more reactive/require less energy to break (than sigma bonds)	Ignore just Dewar structure has pi/double bonds/is unsaturated Ignore just Dewar structure has weaker bonds Do not award C=C/double bonds weaker/require less energy to break (than C-C/single bonds)	$\mathbf{1}$
fewer bonds must break to convert the Dewar structure to benzene	Accept reverse argument Allow any specified numbers to indicate fewer bonds must break		
Ignore fewer new bonds must form Ignore Dewar structure is more similar to benzene Ignore carbon atoms already in a ring/hexagon Ignore any reference to intermolecular forces	Do not award (higher) ring strain in Ladenburg Do not award smaller difference in enthalpy Do not award Ladenburg structure more stable		

Question Number	Answer	Additional guidance	Mark
19(e)	An explanation that makes reference to the following points: E-hexa-1,4-diene - twice the hydrogenation enthalpy (of hex-3-ene) as two (isolated) $\mathrm{C}=\mathrm{C}$ bonds E-hexa-1,3-diene - less exothermic/more stable (by $22 \mathrm{~kJ} \mathrm{~mol}^{-1}$ than E-hexa-1,4-diene and as some delocalisation of pi-bond(s)	Allow double bond for $\mathrm{C}=\mathrm{C}$ throughout Accept $-118 \times 2(=-236)$ as two $\mathrm{C}=\mathrm{C}$ bonds Allow twice the hydrogenation enthalpy as no delocalisation of pi-bond(s) Accept less negative Allow more positive Allow some delocalisation of double bond(s) Allow double bonds/p-orbitals are conjugated Allow double bonds/p-orbitals are close enough to overlap Ignore just $\mathrm{C}=\mathrm{C}$ are close Ignore just delocalisation of electrons Ignore electron density more spread out Ignore resonance stabilised	2

Question Number	Answer	Additional guidance	Mark
19(f)(i)	- skeletal formula of any one isomer - skeletal formulae of second and third isomers	Example of correct skeletal formulae: (1,2-isomer) (1,3-isomer) (1,4-isomer) Allow Kekulé benzene ring Allow structural/displayed CH_{3} and $\mathrm{CH}_{3} \mathrm{CO}$ groups If no other mark awarded, 1,2-, 1,3- and 1,4-isomers with incorrect side chain/cyclohexane ring scores (1)	2

Question Number	Answer	Additional guidance	Mark
19(f)(ii)	- (identification of \mathbf{X} as) 1,4-isomer - (7 peaks consistent with) 7 carbon environments	Allow any form of identification, including (f)(i) annotation Allow just ' 1,4 ' or 'para' M2 dependent on a structure containing 7 carbon environments Accept 1,2-isomer and/or 1,3-isomer have 9 carbon environments/would have 9 peaks Allow (4 arene peaks consistent with) 4 arene carbon environments Allow 1,2-isomer and/or 1,3-isomer have 6 arene carbon environments/would have 6 arene peaks	2

Question Number	Answer	Additional guidance	Mark
19(f)(iii)	A mechanism including: - curly arrow from on or within circle to C^{+}of $\mathrm{CH}_{3} \mathrm{CO}^{+}$ - structure of intermediate ion - curly arrow from $\mathrm{C}-\mathrm{H}$ bond to within ring and correct product - balanced equation for regeneration of catalyst (1)	Example of mechanism: Allow Kekulé benzene ring 'Horseshoe' facing tetrahedral carbon and covering at least three carbons with some part of positive sign within 'horseshoe' Allow methyl at 1,2- or 1,3-positions Ignore missing methyl substituent Do not award dotted/dashed $\mathrm{C}-\mathrm{H} / \mathrm{C}-\mathrm{C}$ bonds unless 3D structure Allow 1,2- or 1,3-product from corresponding intermediate Do not award missing methyl substituent $\begin{equation*} \mathrm{AlCl}_{4}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{AlCl}_{3}+\mathrm{HCl} \tag{1} \end{equation*}$	4

Question Number	Answer	Additional guidance	Mark
20(a)	An answer that makes reference to one of the following points:	Ignore references to ionisation energy Ignore partially full d orbital(s)/d subshell Ignore more than one stable ion Ignore references to heterogeneous catalysis/adsorption Ignore references to alternative reaction pathways/activation energy	$\mathbf{1}$
	- variable oxidation state/oxidation number or (easily) oxidised and reduced (back to original oxidation state) or (easily) donate and accept electrons (from other molecules/species)	Allow can change oxidation state/oxidation number Allow have different oxidation state(s)/oxidation number(s) Ignore variable valency	Allow just lose and gain electrons (easily)

| Question
 Number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- | :---: |
| $\mathbf{2 0 (b) (i) ~}$ | An answer that makes reference to the following points: | Accept coordinate for dative throughout | 2 |
| | - monodentate: forms a single/one dative (covalent) bond (1) | Accept donates a single/one lone pair
 Allow occupies a single/one coordination site | |
| | ligand: (a species with a) lone pair (of electrons) that can form
 a dative (covalent) bond to a (central transition) metal (ion) (1) | | |

| Question
 Number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :---: | :---: |
| 20(b)(ii) | A completed diagram showing: | Expected diagram: | 1 |
| | \bullet three adjacent THF/Cl ligands | | |

Question Number	Answer	Additional guidance	Mark
$\mathbf{2 0 (c) (i)}$	\bullet yellow to (permanent pale) green	Ignore qualifiers, eg pale Ignore precipitate	$\mathbf{1}$
Do not award green to yellow Do not award any combination of yellow and green, eg yellowy-green Do not award any other colour			

| Question
 Number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- | :---: |
| 20(c)(iii) | An equation including: | Example of equation:
 $3 \mathrm{Ti}^{3+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{3}-\rightarrow 3 \mathrm{TiO}^{2+}+2 \mathrm{H}^{+}+\mathrm{NO}$ | $\mathbf{2}$ |
| | • selection of correct nitrogen half-equation | (1) | TE on (c)(ii) provided +3 or +4 oxidation state |

Question Number	Answer	Additional guidance	Mark
20(c)(iv)	An answer that makes reference to the following point: - (calculation of) E^{\ominus} cell value	Example of calculation: $\left(E_{\text {cell }}^{\ominus}=0.96-0.10=\right)(+) 0.86(\mathrm{~V})$ TE on ionic equation from (c)(iii): $\begin{aligned} & (+) 0.7(0)(\mathrm{V}) \text { for } \mathrm{Ti}^{3+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{TiO}^{2+}+\mathrm{NO}_{2} \\ & (+) 0.84(\mathrm{~V}) \text { for } 2 \mathrm{Ti}^{3+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{3}^{-} \rightarrow 2 \mathrm{TiO}^{2+}+\mathrm{H}^{+}+\mathrm{HNO}_{2} \end{aligned}$	1

Question Number	Answer	Additional guidance	Mark
$\mathbf{2 0 (c) (v)}$	An answer that makes reference to the following point:		$\mathbf{1}$
	\bullet (heat is to) speed up/increase rate of reaction	Allow to ensure fast oxidation of Ti ${ }^{3+}$ Allow to provide activation energy $/ E_{\mathrm{a}}$ Allow (reaction has a) high activation energy $/ E_{\mathrm{a}}$ Ignore just to provide (more) energy Ignore to increase collision frequency Ignore to ensure complete reaction Ignore any reference to thermodynamic feasibility	

			Additional guidance	Mark

Indicative points:

- IP1: identification of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complex ion
- IP2: partially filled d-subshell/d-orbital(s) (in Ti^{3+})
- IP3: splitting in energy of d-subshell/d-orbitals by water/ligands
- IP4: absorption of light/photon/(electromagnetic) radiation and electronic transition
- IP5: origin of observed colour of complex ion
- IP6: clearer colour change at end-point with indicator

Allow $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+} /\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$

Accept incomplete for partially filled
Accept (Ti^{3+} is) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{1}\left(4 \mathrm{~s}^{0}\right)$
Allow (Ti^{3+} is) (3) d^{1}
water/ligands and
split the energy of the d-subshell/d-orbitals
Allow ligands cause d-d splitting
Do not award d-orbital (singular)
(visible) light/photon/(electromagnetic) radiation is absorbed and
promoting electrons from lower to higher energy Allow light etc causes d-d transitions
colour due to reflected/transmitted light
Allow colour due to wavelengths/frequencies of light
that are not absorbed
Allow complementary colour observed
Do not award any reference to emission of light
Accept reverse argument
Allow colours are more intense/distinct/sharp/strong
Allow concentration (of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right) 6\right]^{3+} / \mathrm{TiCl}_{3}$) too low to
accurately determine end-point in absence of indicator
Ignore just easier to determine end-point
Ignore just more accurate/precise
Ignore mention of specific colours, even if incorrect
Do not award reference to acid-base colour change

Section C

Question Number	Answer	Additional guidance	Mark
21(a)	A completed mechanism showing:	Example of completed mechanism:	$\mathbf{1}$
	\bullet curly half-arrows to show homolytic fission of O-H bond	Accept curly half-arrows originating from opposite sides of the O-H bond Left-hand curly half-arrow must terminate between T• and H Right hand curly half-arrow must terminate on or near to O atom of H-O	

Question Number	Answer	Additional guidance	Mark
21(b)	A completed mechanism showing: - curly arrow from lone pair on Se^{-}to correct C of $\mathrm{C}=\mathrm{C}$ - curly arrow from $\mathrm{C}=\mathrm{C}$ bond to $\mathrm{C}-\mathrm{C}$ bond and curly arrow from $\mathrm{C}=\mathrm{O}$ bond to O	Example of completed mechanism: Penalise curly half-arrows once only Do not award curly arrow from negative charge on Se^{-} Ignore ($\delta+$) $\mathrm{C}=\mathrm{C}(\delta-)$ dipole Do not award $(\delta-) \mathrm{C}=\mathrm{C}(\delta+)$ dipole Do not award full charge on either carbon of $\mathrm{C}=\mathrm{C}$ bond Do not award incorrect $(\delta-) \mathrm{C}=\mathrm{O}(\delta+)$ dipole	2

Question Number	Answer		Additional guidance	Mark
21(d)(i)	- $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$	(1)	If name and formula given, both must be correct to score M1	2
			Accept names (eg sodium dichromate((VI)) and sulfuric acid) Allow $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ and $\mathrm{H}^{+} /$acidified dichromate	
			Ignore concentration of acid	
			Do not award KMnO_{4} for $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	
			Do not award HCl for $\mathrm{H}_{2} \mathrm{SO}_{4}$	
	- heat/reflux	(1)	M2 dependent on some mention of dichromate (or manganate) oxidising agent Ignore distillation	

Question Number	Answer	Additional guidance	Mark
21(d)(ii)	• correct structure for 2-aminobenzoic acid	Example of correct structure:	$\mathbf{1}$
		Accept hydrochloride salt $\left(-\mathrm{NH}_{3} \mathrm{Cl}\right)$ Allow protonated amine group $\left(-\mathrm{NH}_{3}{ }^{+}\right)$ Allow any correct combination of skeletal, structural or displayed formulae	Allow Kekulé benzene Ignore connectivity Ignore name, even if incorrect

Question Number	Answer	Additional guidance	Mark
21(d)(iii)	($\mathrm{NaNO}_{2} /$ sodium nitrite/sodium nitrate(III) and $\mathrm{HCl} /$ hydrochloric acid	Allow $\mathrm{HNO}_{2} /$ nitrous acid Allow H^{+}and $\mathrm{NO}_{2}{ }^{-}$ Ignore conditions, including concentration of HCl Ignore $\mathrm{H}_{2} \mathrm{O}$ Do not award $\mathrm{NaNO}_{3} /$ sodium nitrate	$\mathbf{1}$

Question Number	Answer	Additional guidance	Mark
21(d)(iv)	• correct structure for N, N-dimethylphenylamine	Example of correct structure:	$\mathbf{1}$
			Allow any correct combination of skeletal, structural or displayed formulae Allow Kekulé benzene
Ignore quaternary salt $\left(-\mathrm{N}\left(\mathrm{CH}_{3}\right) 3^{+}\right)$			
Ignore name, even if incorrect			

Question Number	Answer	Additional guidance		Mark
21(d)(v)	An explanation including:		$\mathbf{2}$	
	\bullet effect of temperature higher than $5^{\circ} \mathrm{C}$	(1)	(diazonium/it) decomposes / reacts with water / forms a phenol / undergoes nucleophilic substitution (above $\left.5^{\circ} \mathrm{C}\right)$ Ignore byproducts form / side reactions occur / yield too low (above $\left.5^{\circ} \mathrm{C}\right)$	
	\bullet effect of temperature lower than $5^{\circ} \mathrm{C}$	(1)	(rate of reaction) too slow (below $\left.5^{\circ} \mathrm{C}\right)$ Allow just slows down (below $\left.5^{\circ} \mathrm{C}\right)$ Ignore insufficient energy for reaction to occur (below $\left.5^{\circ} \mathrm{C}\right)$ Ignore any reference to activation energy/collision frequency Ignore freezes (at $0^{\circ} \mathrm{C}$ and below)	

Question Number	Answer	Additional guidance	Mark
21(e)(i)	A completed equation showing: - correct balancing of propanone and sodium ethanoate - correct balancing of sodium hydroxide and water	Example of equation: M2 dependent on M1	2

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark }\end{array}\right\}$

	OR Method 2 (M2 and M3) - mass indigotin if 100% yield and moles indigotin if 100% yield - indigotin:2-nitrobenzaldehyde mol ratio and mass 2-nitrobenzaldehyde	```mass indigotin if \(100 \%\) yield \(=\frac{100}{85} \times 10.0\) \(=11.765(\mathrm{~g})\) moles indigotin if \(100 \%\) yield \(=\frac{11.765}{262}=0.044903\) TE on \(M\) (indigotin) moles 2-nitrobenzaldehyde \(=2 \times 0.044903(=0.089807)\) TE on moles indigotin mass 2-nitrobenzaldehyde \(=0.089807 \times 151\) \(=13.561\) \(=14(\mathrm{~g})\) TE on moles 2-nitrobenzaldehyde TE on \(M\) (2-nitrobenzaldehyde)```

Question Number	Answer	Additional guidance	Mark
21(f)(i)	A drawing showing:	Example of drawing:	2
	hydrolysed ester linkage and correct carbon frame and amine group	Allow E isomer Allow Kekulé benzene	Allow any correct combination of skeletal, structural or displayed formulae

Total for Section C = 20 marks Total for Paper $=\mathbf{9 0}$ marks

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

